
CSE 451: Operating Systems

Winter 2025

Module 7

Synchronization

Gary Kimura

2

Temporal relations

• Instructions executed by a single thread are totally
ordered
– A < B < C < …

• Absent synchronization, instructions executed by
distinct threads must be considered unordered /
simultaneous
– Not X < X’, and not X’ < X

3

Example: In the beginning...
main()

A

B

pthread_create()

A'

foo()

C

B'

• A < B < C
• A' < B'
• A < A'
• C == A'
• C == B'

Y-axis is “time.”

Could be one CPU, could
be multiple CPUs (cores).

Example

4

Critical Sections / Mutual Exclusion

• Sequences of instructions that may get incorrect
results if executed simultaneously are called critical
sections

• (We also use the term race condition to refer to a
situation in which the results depend on timing)

• Mutual exclusion means “not simultaneous”
– A < B or B < A
– We don’t care which

• Forcing mutual exclusion between two critical section
executions is sufficient to ensure correct execution –
guarantees ordering

• One way to guarantee mutually exclusive execution
is using locks

5

Critical sections

Possibly incorrect Correct Correct

T1 T2 T1 T2 T1 T2

is the “happens-before” relation

Critical sections

6

When do critical sections arise?

• One common pattern:
– read-modify-write of

– a shared value (variable)

– in code that can be executed concurrently

(Note: There may be only one copy of the code (e.g., a
procedure), but it can be executed by more than one thread
at a time)

• Shared variable:
– Globals and heap-allocated variables

– NOT local variables (which are on the stack)

(Note: Never give a reference to a stack-allocated (local)
variable to another thread, unless you’re superhumanly
careful …)

7

Example: buffer management

• Threads cooperate in multithreaded programs
– to share resources, access shared data structures

• e.g., threads accessing a memory cache in a web server

– also, to coordinate their execution
• e.g., a disk reader thread hands off blocks to a network writer

thread through a circular buffer

disk
reader
thread

network
writer
thread

circular
buffer

8

Example: shared bank account

• Suppose we have to implement a function to
withdraw money from a bank account:

int withdraw(account, amount) {

int balance = get_balance(account); // read

balance -= amount; // modify

put_balance(account, balance); // write

spit out cash;

}

• Now suppose that you and your partner share a bank
account with a balance of $100.00
– what happens if you both go to separate ATM machines, and

simultaneously withdraw $10.00 from the account?

9

• Assume the bank’s application is multi-threaded

• A random thread is assigned a transaction when that
transaction is submitted

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

10

Interleaved schedules

• The problem is that the execution of the two threads
can be interleaved, assuming preemptive scheduling:

• What’s the account balance after this sequence?
– who’s happy, the bank or you?

• How often is this sequence likely to occur?

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

put_balance(account, balance);

spit out cash;

Execution sequence
as seen by CPU

context switch

context switch

11

• Which interleavings are ok? Which are not?

Other Execution Orders

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

12

int xfer(from, to, amt) {

withdraw(from, amt);

deposit(to, amt);

}

How About Now?

int xfer(from, to, amt) {

withdraw(from, amt);

deposit(to, amt);

}

• Morals:
– Interleavings are hard to reason about

• We make lots of mistakes

• Control-flow analysis is hard for tools to get right

– Identifying critical sections and ensuring mutually exclusive
access is … “easier”

13

i++;

Another example

i++;

14

Correct critical section requirements

• Correct critical sections have the following
requirements
– mutual exclusion

• at most one thread is in the critical section

– progress
• if thread T is outside the critical section, then T cannot prevent

thread S from entering the critical section

– bounded waiting (no starvation)
• if thread T is waiting on the critical section, then T will

eventually enter the critical section
– assumes threads eventually leave critical sections

– performance
• the overhead of entering and exiting the critical section is small

with respect to the work being done within it

15

Mechanisms for building critical sections

• Spinlocks
– primitive, minimal semantics; used to build others

• Semaphores (and non-spinning locks)
– basic, easy to get the hang of, somewhat hard to program

with

• Monitors
– higher level, requires language support, implicit operations

– easier to program with; Java “synchronized()” as an
example

• Messages
– simple model of communication and synchronization based

on (atomic) transfer of data across a channel

– direct application to distributed systems

16

Locks

• A lock is a memory object with two operations:
– acquire(): obtain the right to enter the critical section

– release(): give up the right to be in the critical section

• acquire() prevents progress of the thread until the
lock can be acquired

• (Note: terminology varies: acquire/release,
lock/unlock)

17

Locks: Example execution

lock()

unlock()

lock()

unlock()

Two choices:
• Spin
• Block
• (Spin-then-block)

Locks: Example

18

Acquire/Release

• Threads pair up calls to acquire() and release()
– between acquire()and release(), the thread holds the

lock
– acquire() does not return until the caller “owns” (holds)

the lock
• at most one thread can hold a lock at a time

– What happens if the calls aren’t paired (I acquire, but neglect
to release)?

– What happens if the two threads acquire different locks (I
think that access to a particular shared data structure is
mediated by lock A, and you think it’s mediated by lock B)?

• (granularity of locking)

19

Using locks

• What happens when green tries to acquire the lock?

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

spit out cash;

20

Roadmap …

• Where we are eventually going:
– The OS and/or the user-level thread package will provide

some sort of efficient primitive for user programs to utilize in
achieving mutual exclusion (for example, locks or
semaphores, used with condition variables)

– There may be higher-level constructs provided by a
programming language to help you get it right (for example,
monitors – which also utilize condition variables)

• But somewhere, underneath it all, there needs to be
a way to achieve “hardware” mutual exclusion (for
example, test-and-set used to implement spinlocks)
– This mechanism will not be utilized by user programs

– But it will be utilized in implementing what user programs
see

21

Spinlocks

• How do we implement spinlocks? Here’s one attempt:

• Why doesn’t this work?
– where is the race condition?

struct lock_t {

int held = 0;

}

void acquire(lock) {

while (lock->held);

lock->held = 1;

}

void release(lock) {

lock->held = 0;

}

the caller “busy-waits”,
or spins, for lock to be
released hence spinlock

22

Implementing spinlocks (cont.)

• Problem is that implementation of spinlocks has
critical sections, too!
– the acquire/release must be atomic

• atomic == executes as though it could not be interrupted

• code that executes “all or nothing”

• Need help from the hardware
– atomic instructions

• test-and-set, compare-and-swap, …

– disable/reenable interrupts
• to prevent context switches

23

Spinlocks redux: Hardware Test-and-Set

• CPU provides the following as one atomic instruction:

• Remember, this is a single atomic instruction …

bool test_and_set(bool *flag) {

bool old = *flag;

*flag = True;

return old;

}

24

Compare and Exchange

• Compare and Exchange replaces Test and Set

• It takes three parameters
– Pointer to a memory location

– Comparand

– Value

• Atomically
– If the Comparand is equal to what is stored in the memory location then

replace it with the new Value and return what was previously stored in
the memory location

– A gotcha with multiprocessor systems is the need to restrict access to
the memory location while doing the operation.

int Cmpxchg(int *Ptr, int Comparand, int NewValue) {
int OldValue = *Ptr;
if (OldValue == Comparand) *Ptr = NewValue;
return OldValue;

}

25

Implementing spinlocks using CMPXCHG

• So, to fix our broken spinlocks:

– mutual exclusion? (at most one thread in the critical section)

– progress? (T outside cannot prevent S from entering)

– bounded waiting? (waiting T will eventually enter)

– performance? (low overhead (modulo the spinning part …))

struct lock {

int held = 0;

}

void acquire(lock) {

while(cmpxchg(&lock->held, 0, MyID));

}

void release(lock) {

lock->held = 0;

}

26

Reminder of use …

• How does a thread blocked on an “acquire” (that is,
stuck in a test-and-set loop) yield the CPU?
– calls yield() (spin-then-block)

– there’s an involuntary context switch (e.g., timer interrupt)

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

spit out cash;

27

Problems with spinlocks

• Spinlocks work, but are wasteful!
– if a thread is spinning on a lock, the thread holding the lock

cannot make progress
• You’ll spin for a scheduling quantum

– (pthread_spin_t)

• Only want spinlocks as primitives to build higher-level
synchronization constructs
– Why is this okay?

• We’ll see later how to build blocking locks
– But there is overhead – can be cheaper to spin
– (pthread_mutex_t)

28

Another approach: Disabling interrupts

struct lock {

}

void acquire(lock) {

cli(); // disable interrupts

}

void release(lock) {

sti(); // reenable interrupts

}

29

Problems with disabling interrupts

• Only available to the kernel
– Can’t allow user-level to disable interrupts!

• Insufficient on a multiprocessor
– Each processor has its own interrupt mechanism

• “Long” periods with interrupts disabled can wreak
havoc with devices

• Just as with spinlocks, you only want to use disabling
of interrupts to build higher-level synchronization
constructs

30

Race conditions

• Informally, we say a program has a race condition
(aka “data race”) if the result of an executing depends
on timing
– i.e., is non-deterministic

• Typical symptoms
– I run it on the same data, and sometimes it prints 0 and

sometimes it prints 4

– I run it on the same data, and sometimes it prints 0 and
sometimes it crashes

31

Quick Recap

 Most basic locking primitives are acquire() and release()
 Most common Hardware support for doing locks

o Fiddle with interrupts, Only works for the kernel and not
multiprocessors (so pretty irrelevant)

o Storing something in memory, The idea is that the last writer
wins.

 Spinlocks
o The most rudimentary building block used to

implement higher level locks
o Easy to implement but wasteful if held too long, why?

Because other threads will end up spinning instead of
sleeping for the lock

 Now onto higher level synchronization constructs

32

Summary

• Synchronization introduces temporal ordering
• Adding synchronization can eliminate races
• Synchronization can be provided by locks,

semaphores, monitors, messages …
• Spinlocks are the lowest-level mechanism

– primitive in terms of semantics – error-prone
– implemented by spin-waiting (crude) or by disabling

interrupts (also crude, and can only be done in the kernel)

• In our next exciting episode …
– semaphores are a slightly higher level abstraction

• Importantly, they are implemented by blocking, not spinning
• Locks can also be implemented in this way

– monitors are significantly higher level
• utilize programming language support to reduce errors

